Design and Maintenance: Dong Yin, Xuanning Zhang, Lilin Yin ,Haohao Zhang, and Xiaolei Liu.
Contributors: Zhenshuang Tang, Jingya Xu, Xiaohui Yuan, Xiang Zhou, Xinyun Li, and Shuhong Zhao.
If you have any bug reports or questions, please feed back :point_right:here:point_left:.
|
|
|
|
|
WE STRONGLY RECOMMEND TO INSTALL SIMER ON Microsoft R Open (https://mran.microsoft.com/download/).
After installed successfully, SIMER
can be loaded by typing
Typing ?simer
could get the details of all parameters.
Genotype data should be Numeric format (m rows and n columns, m is the number of SNPs, n is the number of individuals). Other genotype data, such as PLINK Binary format (details see http://zzz.bwh.harvard.edu/plink/data.shtml#bed), VCF, or Hapmap can be converted to Numeric format using MVP.Data
function in the rMVP
(https://github.com/xiaolei-lab/rMVP).
genotype.txt
2 | 1 | 0 | 1 | 0 | … | 0 |
1 | 2 | 0 | 1 | 0 | … | 0 |
1 | 1 | 2 | 1 | 0 | … | 0 |
1 | 1 | 0 | 2 | 1 | … | 0 |
0 | 0 | 0 | 0 | 2 | … | 0 |
back to top
A genetic map is necessary in SIMER
. The first column is the SNP name, the second column is the Chromosome ID, the third column is physical position, the fourth column is REF, and the fifth column is ALT. This will be used to generate annotation data, genotype data, and phenotype data.
map.txt
SNP | Chrom | BP | REF | ALT |
---|---|---|---|---|
1_10673082 | 1 | 10673082 | T | C |
1_10723065 | 1 | 10723065 | A | G |
1_11407894 | 1 | 11407894 | A | G |
1_11426075 | 1 | 11426075 | T | C |
1_13996200 | 1 | 13996200 | T | C |
1_14638936 | 1 | 14638936 | T | C |
back to top
SIMER
supports user designed pedigree to control mating process. User designed pedigree is useful only in userped
reproduction. The first column is sample id, the second column is paternal id, and the third column is maternal id. Please make sure that paternal id and maternal id can match to genotype data.
userped.txt
Index | Sire | Dam |
---|---|---|
41 | 1 | 11 |
42 | 1 | 11 |
43 | 1 | 11 |
44 | 1 | 11 |
45 | 2 | 12 |
46 | 2 | 12 |
back to top
At least users should prepare two datasets: genotypic map and genotype data.
genotype data, Numeric format (m rows and n columns, m is the number of SNPs, n is the number of individuals)
genotypic map, SNP map information, the first column is SNP name, the second column is Chromosome ID, the third column is physical position, the fourth column is REF, and the fifth column is ALT.
back to top
The mating process can be designed by user-designed pedigree.
pedigree, pedigree information, the first column is sample id, the second column is paternal id, and the third column is maternal id. Note that the individuals in the pedigree do not need to be sorted by the date of birth, and the missing value can be replaced by NA or 0.
All simulation processes can be divided into two steps: 1) generation of simulation parameters; 2) run simulation process.
A quick start for Population Simulation is shown below:
A quick start for Genotype Simulation is shown below:
# Generate annotation simulation parameters
SP <- param.annot(species = "pig")
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2)
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
A quick start for Phenotype Simulation is shown below:
# Generate annotation simulation parameters
SP <- param.annot(species = "pig")
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2)
# Generate phenotype simulation parameters
SP <- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
Genotype data in SIMER
is generated randomly or through an external genotype matrix. Chromosome crossovers and base mutations depend on block information and recombination information of Annotation data.
genotype
, main function of Genotype Simulation:
Paramater | Default | Options | Description |
pop.geno | NULL | big.matrix or matrix | the genotype data. |
incols | 1 | 1 or 2 | ‘1’: one-column genotype represents an individual; ‘2’: two-column genotype represents an individual. |
pop.marker | 1e4 | num | the number of markers. |
pop.ind | 1e2 | num | the number of individuals in the base population. |
prob | NULL | num vector | the genotype code probability. |
rate.mut | 1e-8 | num | the mutation rate of the genotype data. |
annotation
, main function of Annotation Simulation:
Paramater | Default | Options | Description |
pop.map | NULL | data.frame | the map data with annotation information. |
species | NULL | character | the species of genetic map, which can be “arabidopsis”, “cattle”, “chicken”, “dog”, “horse”, “human”, “maize”, “mice”, “pig”, and “rice”. |
pop.marker | 1e4 | num | the number of markers. |
num.chr | 18 | num | the number of chromosomes. |
len.chr | 1.5e8 | num | the length of chromosomes. |
recom.spot | FALSE | TRUE or FALSE | whether to generate recombination events. |
range.hot | 4:6 | num vector | the recombination times range in the hot spot. |
range.cold | 1:5 | num vector | the recombination times range in the cold spot. |
Users can generate a genetic map by inputting an external genetic map.
# Real genotypic map
mapPath <- system.file("extdata", "06map", "pig_map.txt", package = "simer")
pop.map <- read.table(mapPath, header = TRUE)
# Generate annotation simulation parameters
SP <- param.annot(pop.map = pop.map)
# Run annotation simulation
SP <- annotation(SP)
Users can also use the inner real genetic map with species
, which can be “arabidopsis”, “cattle”, “chicken”, “dog”, “horse”, “human”, “maize”, “mice”, “pig”, and “rice”.
# Generate annotation simulation parameters
SP <- param.annot(species = "pig")
# Run annotation simulation
SP <- annotation(SP)
Users can generate a random genetic map with pop.marker
, num.chr
, and len.chr
.
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4, num.chr = 18, len.chr = 1.5e8)
# Run annotation simulation
SP <- annotation(SP)
Users can use real genotype data with specific genetic structure for subsequent simulation.
# Create a genotype matrix
# pop.geno <- read.table("genotype.txt")
# pop.geno <- bigmemory::attach.big.matrix("genotype.geno.desc")
pop.geno <- matrix(c(0, 1, 2, 0), nrow = 1e4, ncol = 1e2, byrow = TRUE)
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4)
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.geno = pop.geno)
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
Users can also generate genotype matrix with the inner real genetic map with species
, which can be “arabidopsis”, “cattle”, “chicken”, “dog”, “horse”, “human”, “maize”, “mice”, “pig”, and “rice”.
# Generate annotation simulation parameters
SP <- param.annot(species = "pig")
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2)
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
Users can also specify pop.marker
and pop.ind
to generate random genotype data.
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4)
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2)
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
Users can generate a genotype matrix with complete linkage disequilibrium by incols = 2
and cld = TRUE
.
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4)
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2, incols = 2, cld = TRUE)
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
With annotation data, chromosome crossovers and mutations can be added to a genotype matrix.
# Generate annotation simulation parameters
# If recom.spot = TRUE, chromsome crossovers will be added to genotype matrix
SP <- param.annot(pop.marker = 1e4, recom.spot = TRUE)
# Generate genotype simulation parameters
# Base mutation rate of QTN and SNP are 1e8
SP <- param.geno(SP = SP, pop.ind = 1e2, rate.mut = list(qtn = 1e-8, snp = 1e-8))
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
Note that recombination only exists in meiosis. Therefore, some reproduction methods such as clone
do not have recombination processes. Users can set recom.spot = FALSE
to add only mutations to the genotype matrix.
# Generate annotation simulation parameters
# If recom.spot = FALSE, chromsome crossovers will not be added to genotype matrix
SP <- param.annot(pop.marker = 1e4, recom.spot = FALSE)
# Generate genotype simulation parameters
# Base mutation rate of QTN and SNP are 1e8
SP <- param.geno(SP = SP, pop.ind = 1e2, rate.mut = list(qtn = 1e-8, snp = 1e-8))
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
Phenotype data in SIMER
is generated according to different models, which include:
(1) Single-Trait Model
(2) Multiple-Trait Model
(3) Repeated Record Model
(4) Genetic Effect Model (Additive effect, Dominant effect, and Genetic-Genetic interaction effect)
(5) Genetic Model with Varied QTN Effect Distributions (QTN effect distribution: Normal distribution, Geometric distribution, Gamma distribution, Beta distribution, and their combination)
(6) Linear Mixed Model (Fixed effect, Covariate, Environmental Random effect, Genetic Random effect, Genetic-Environmental interaction effect, and Environmental-Environmental interaction effect)
phenotype
, main function of Phenotype Simulation:
Paramater | Default | Options | Description |
pop | NULL | data.frame | the population information containing environmental factors and other effects. |
pop.ind | 100 | num | the number of individuals in the base population. |
pop.rep | 1 | num | the repeated times of repeated records. |
pop.rep.bal | TRUE | TRUE or FALSE | whether repeated records are balanced. |
pop.env | NULL | list | a list of environmental factors setting. |
phe.type | list(tr1 = “continuous”) | list | a list of phenotype types. |
phe.model | list(tr1 = “T1 = A + E”) | list | a list of genetic model of phenotype such as “T1 = A + E”. |
phe.h2A | list(tr1 = 0.3) | list | a list of additive heritability. |
phe.h2D | list(tr1 = 0.1) | list | a list of dominant heritability. |
phe.h2GxG | NULL | list | a list of GxG interaction heritability. |
phe.h2GxE | NULL | list | a list of GxE interaction heritability. |
phe.h2PE | NULL | list | a list of permanent environmental heritability. |
phe.var | NULL | list | a list of phenotype variance. |
phe.corA | NULL | matrix | the additive genetic correlation matrix. |
phe.corD | NULL | matrix | the dominant genetic correlation matrix. |
phe.corGxG | NULL | list | a list of the GxG genetic correlation matrix. |
phe.corPE | NULL | matrix | the permanent environmental correlation matrix. |
phe.corE | NULL | matrix | the residual correlation matrix. |
annotation
, main function of Annotation Simulation:
Paramater | Default | Options | Description |
pop.map | NULL | data.frame | the map data with annotation information. |
qtn.model | ‘A’ | character | the genetic model of QTN such as ‘A + D’. |
qtn.index | 10 | list | the QTN index for each trait. |
qtn.num | 10 | list | the QTN number for (each group in) each trait. |
qtn.dist | list(tr1 = ‘norm’) | list | the QTN distribution containing ‘norm’, ‘geom’, ‘gamma’ or ‘beta’. |
qtn.var | list(tr1 = 1) | list | the variances for normal distribution. |
qtn.prob | NULL | list | the probability of success for geometric distribution. |
qtn.shape | NULL | list | the shape parameter for gamma distribution. |
qtn.scale | NULL | list | the scale parameter for gamma distribution. |
qtn.shape1 | NULL | list | the shape1 parameter for beta distribution. |
qtn.shape2 | NULL | list | the shape2 parameter for beta distribution. |
qtn.ncp | NULL | list | the ncp parameter for beta distribution. |
qtn.spot | NULL | list | the QTN distribution probability in each block. |
len.block | 5e7 | num | the block length. |
maf | NULL | num | the maf threshold, markers less than this threshold will be exclude. |
Users can use real genotype data with specific genetic structure to generate phenotype.
# Create a genotype matrix
# pop.geno <- read.table("genotype.txt")
# pop.geno <- bigmemory::attach.big.matrix("genotype.geno.desc")
pop.geno <- matrix(c(0, 1, 2, 0), nrow = 1e4, ncol = 1e2, byrow = TRUE)
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4)
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.geno = pop.geno)
# Generate phenotype simulation parameters
SP <- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
Users can also generate phenotype using species-specific genotype matrix.
# Generate annotation simulation parameters
SP <- param.annot(species = "pig")
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2)
# Generate phenotype simulation parameters
SP <- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
Users can also generate phenotype using random genotype.
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4)
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2)
# Generate phenotype simulation parameters
SP <- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
SIMER
generates continuous phenotypes by default. Continuous phenotype simulation is displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10), qtn.model = "A") # Additive effect
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2) # random genotype
# Generate phenotype simulation parameters
SP <- param.pheno(
SP = SP,
phe.type = list(tr1 = "continuous"),
phe.model = list(tr1 = "T1 = A + E"), # "T1" (Trait 1) consists of Additive effect and Residual effect
# phe.var = list(tr1 = 100),
phe.h2A = list(tr1 = 0.3)
)
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
Multiple-trait simulation of continuous phenotype is displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10, tr2 = 10), qtn.model = "A") # Additive effect
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2) # random genotype
# Generate phenotype simulation parameters
SP <- param.pheno(
SP = SP,
phe.type = list(tr1 = "continuous", tr2 = "continuous"),
phe.model = list(
tr1 = "T1 = A + E", # "T1" (Trait 1) consists of Additive effect and Residual effect
tr2 = "T2 = A + E" # "T2" (Trait 2) consists of Additive effect and Residual effect
),
# phe.var = list(tr1 = 100, tr2 = 100),
phe.h2A = list(tr1 = 0.3, tr2 = 0.3),
phe.corA = matrix(c(1, 0.5, 0.5, 1), 2, 2) # Additive genetic correlation
)
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
SIMER
generates case-control phenotypes by phe.type
. phe.type
consists of the variable names and their percentages. Case-control phenotype simulation is displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10), qtn.model = "A") # Additive effect
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2) # random genotype
# Generate phenotype simulation parameters
SP <- param.pheno(
SP = SP,
phe.type = list(tr1 = list(case = 0.01, control = 0.99)), # "T1" (Trait 1) consists of 1% case and 99% control
phe.model = list(tr1 = "T1 = A + E"), # "T1" (Trait 1) consists of Additive effect and Residual effect
# phe.var = list(tr1 = 100),
phe.h2A = list(tr1 = 0.3)
)
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
Multiple-trait simulation of case-control phenotype is displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10, tr2 = 10), qtn.model = "A") # Additive effect
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2) # random genotype
# Generate phenotype simulation parameters
SP <- param.pheno(
SP = SP,
phe.type = list(
tr1 = list(case = 0.01, control = 0.99), # "T1" (Trait 1) consists of 1% case and 99% control
tr2 = list(case = 0.01, control = 0.99) # "T2" (Trait 2) consists of 1% case and 99% control
),
phe.model = list(
tr1 = "T1 = A + E", # "T1" (Trait 1) consists of Additive effect and Residual effect
tr2 = "T2 = A + E" # "T2" (Trait 2) consists of Additive effect and Residual effect
),
# phe.var = list(tr1 = 100, tr2 = 100),
phe.h2A = list(tr1 = 0.3, tr2 = 0.3),
phe.corA = matrix(c(1, 0.5, 0.5, 1), 2, 2) # Additive genetic correlation
)
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
SIMER
generates categorical phenotypes by phe.type
. phe.type
consists of the variable names and their percentages. Categorical phenotype simulation is displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10), qtn.model = "A") # Additive effect
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2) # random genotype
# Generate phenotype simulation parameters
SP <- param.pheno(
SP = SP,
phe.type = list(tr1 = list(low = 0.3, medium = 0.4, high = 0.3)), # "T1" (Trait 1) consists of 30% low, 40% medium, and 30% high
phe.model = list(tr1 = "T1 = A + E"), # "T1" (Trait 1) consists of Additive effect and Residual effect
# phe.var = list(tr1 = 100),
phe.h2A = list(tr1 = 0.3)
)
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
Multiple-trait simulation of categorical phenotype is displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10, tr2 = 10), qtn.model = "A") # Additive effect
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2) # random genotype
# Generate phenotype simulation parameters
SP <- param.pheno(
SP = SP,
phe.type = list(
tr1 = list(low = 0.3, medium = 0.4, high = 0.3), # "T1" (Trait 1) consists of 30% low, 40% medium, and 30% high
tr2 = list(low = 0.3, medium = 0.4, high = 0.3) # "T2" (Trait 2) consists of 30% low, 40% medium, and 30% high
),
phe.model = list(
tr1 = "T1 = A + E", # "T1" (Trait 1) consists of Additive effect and Residual effect
tr2 = "T2 = A + E" # "T2" (Trait 2) consists of Additive effect and Residual effect
),
# phe.var = list(tr1 = 100, tr2 = 100),
phe.h2A = list(tr1 = 0.3, tr2 = 0.3),
phe.corA = matrix(c(1, 0.5, 0.5, 1), 2, 2) # Additive genetic correlation
)
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
In an “A” model, SIMER
only considers an Additive effect as a genetic effect. Users should prepare Additive QTN effect in the Annotation data to generate an Additive Individual effect. An Additive single-trait simulation is displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10), qtn.model = "A") # Additive effect
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2) # random genotype
# Generate phenotype simulation parameters
SP <- param.pheno(
SP = SP,
phe.model = list(tr1 = "T1 = A + E"), # "T1" (Trait 1) consists of Additive effect and Residual effect
# phe.var = list(tr1 = 100),
phe.h2A = list(tr1 = 0.3)
)
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
In the multiple-trait simulation, SIMER
builds accurate Additive genetic correlation among multiple traits. An Additive multiple-trait simulation is displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10, tr2 = 10), qtn.model = "A") # Additive effect
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2) # random genotype
# Generate phenotype simulation parameters
SP <- param.pheno(
SP = SP,
phe.model = list(
tr1 = "T1 = A + E", # "T1" (Trait 1) consists of Additive effect and Residual effect
tr2 = "T2 = A + E" # "T2" (Trait 2) consists of Additive effect and Residual effect
),
# phe.var = list(tr1 = 100, tr2 = 100),
phe.h2A = list(tr1 = 0.3, tr2 = 0.3),
phe.corA = matrix(c(1, 0.5, 0.5, 1), 2, 2) # Additive genetic correlation
)
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
In an “AD” model, SIMER
considers Additive effect and Dominant effect as genetic effect. Users should prepare Additive QTN effect and Dominant QTN effect in the Annotation data to generate an Additive Individual effect and Dominant Individual effect. Additive and Dominant single-trait simulation is displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10), qtn.model = "A + D") # Additive effect and Dominant effect
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2) # random genotype
# Generate phenotype simulation parameters
SP <- param.pheno(
SP = SP,
phe.model = list(tr1 = "T1 = A + D + E"), # "T1" (Trait 1) consists of Additive effect, Dominant effect, and Residual effect
# phe.var = list(tr1 = 100),
phe.h2A = list(tr1 = 0.3),
phe.h2D = list(tr1 = 0.1)
)
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
In multiple-trait simulation, SIMER
builds accurate Additive genetic correlation and accurate Dominant genetic correlation among multiple traits. An Additive and Dominant multiple-trait simulation is displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10, tr2 = 10), qtn.model = "A + D") # Additive effect and Dominant effect
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2) # random genotype
# Generate phenotype simulation parameters
SP <- param.pheno(
SP = SP,
phe.model = list(
tr1 = "T1 = A + D + E", # "T1" (Trait 1) consists of Additive effect, Dominant effect, and Residual effect
tr2 = "T2 = A + D + E" # "T2" (Trait 2) consists of Additive effect, Dominant effect, and Residual effect
),
# phe.var = list(tr1 = 100, tr2 = 100),
phe.h2A = list(tr1 = 0.3, tr2 = 0.3),
phe.h2D = list(tr1 = 0.1, tr2 = 0.1),
phe.corA = matrix(c(1, 0.5, 0.5, 1), 2, 2), # Additive genetic correlation
phe.corD = matrix(c(1, 0.5, 0.5, 1), 2, 2) # Dominant genetic correlation
)
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
In a “GxG” model, SIMER
considers Genetic-Genetic effect as a genetic effect. Users should prepare Genetic-Genetic QTN effect in the Annotation data to generate Genetic-Genetic Individual effect. An example of Additive-Dominant interaction in single-trait simulation is displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10), qtn.model = "A + D + A:D") # Additive effect, Dominant effect, and Additive-Dominant interaction effect
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2) # random genotype
# Generate phenotype simulation parameters
SP <- param.pheno(
SP = SP,
phe.model = list(tr1 = "T1 = A + D + A:D + E"), # "T1" (Trait 1) consists of Additive effect, Dominant effect, Additive-Dominant interaction effect, and Residual effect
# phe.var = list(tr1 = 100),
phe.h2A = list(tr1 = 0.3),
phe.h2D = list(tr1 = 0.1),
phe.h2GxG = list(tr1 = list("A:D" = 0.1))
)
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
In the multiple-trait simulation, SIMER
builds accurate Genetic-Genetic interaction correlation among multiple traits. An example of Additive-Dominant interaction in multiple-trait simulation is displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10, tr2 = 10), qtn.model = "A + D + A:D") # Additive effect, Dominant effect, and Additive-Dominant interaction effect
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2) # random genotype
# Generate phenotype simulation parameters
SP <- param.pheno(
SP = SP,
phe.model = list(
tr1 = "T1 = A + D + A:D + E", # "T1" (Trait 1) consists of Additive effect, Dominant effect, Additive-Dominant interaction effect, and Residual effect
tr2 = "T2 = A + D + A:D + E" # "T2" (Trait 2) consists of Additive effect, Dominant effect, Additive-Dominant interaction effect, and Residual effect
),
# phe.var = list(tr1 = 100, tr2 = 100),
phe.h2A = list(tr1 = 0.3, tr2 = 0.3),
phe.h2D = list(tr1 = 0.1, tr2 = 0.1),
phe.h2GxG = list(tr1 = list("A:D" = 0.1), tr2 = list("A:D" = 0.1)),
phe.corA = matrix(c(1, 0.5, 0.5, 1), 2, 2), # Additive genetic correlation
phe.corD = matrix(c(1, 0.5, 0.5, 1), 2, 2), # Dominant genetic correlation
phe.corGxG = list("A:D" = matrix(c(1, 0.5, 0.5, 1), 2, 2)) # Additive-Dominant interaction genetic correlation
)
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
In the Repeated Record model, SIMER
adds a PE (Permanent Environmental) effect to the phenotype. The number of repeated records can be set by pop.rep
. In the meantime, pop.rep.bal
can be used to determine whether repeated records are balanced. The Repeated Record in a single-trait simulation is displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10), qtn.model = "A") # Additive effect
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2) # random genotype
# Generate phenotype simulation parameters
SP <- param.pheno(
SP = SP,
pop.rep = 2, # The number of repeated records is 2
pop.rep.bal = TRUE, # Repeated records are balanced
phe.model = list(tr1 = "T1 = A + E"), # "T1" (Trait 1) consists of Additive effect and Residual effect
# phe.var = list(tr1 = 100),
phe.h2A = list(tr1 = 0.3)
)
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
In the multiple-trait simulation, SIMER
builds accurate Permanent Environmental correlation among multiple traits. Repeated Record in multiple-trait simulation is displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10, tr2 = 10), qtn.model = "A") # Additive effect
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2) # random genotype
# Generate phenotype simulation parameters
SP <- param.pheno(
SP = SP,
pop.rep = 2, # The number of repeated records is 2
pop.rep.bal = TRUE, # Repeated records are balanced
phe.model = list(
tr1 = "T1 = A + E", # "T1" (Trait 1) consists of Additive effect and Residual effect
tr2 = "T2 = A + E" # "T2" (Trait 2) consists of Additive effect and Residual effect
),
# phe.var = list(tr1 = 100, tr2 = 100),
phe.h2A = list(tr1 = 0.3, tr2 = 0.3),
phe.corA = matrix(c(1, 0.5, 0.5, 1), 2, 2), # Additive genetic correlation
phe.corPE = matrix(c(1, 0.5, 0.5, 1), 2, 2) # Permanent Environmental correlation
)
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
Normal distribution is the most common QTN effect distribution. Phenotype controlled by QTNs subject to Normal distribution in single-trait simulation is displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(
pop.marker = 1e4,
qtn.num = list(tr1 = 10),
qtn.model = "A",
qtn.dist = list(tr1 = "norm"),
qtn.var = list(tr1 = 1)
)
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2) # random genotype
# Generate phenotype simulation parameters
SP <- param.pheno(
SP = SP,
phe.model = list(tr1 = "T1 = A + E"), # "T1" (Trait 1) consists of Additive effect and Residual effect
# phe.var = list(tr1 = 100),
phe.h2A = list(tr1 = 0.3)
)
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
Phenotype controlled by QTNs subject to Normal distribution in multiple-trait simulation is displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(
pop.marker = 1e4,
qtn.num = list(tr1 = 10, tr2 = 10),
qtn.model = "A",
qtn.dist = list(tr1 = "norm", tr2 = "norm"),
qtn.var = list(tr1 = 1, tr2 = 1)
)
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2) # random genotype
# Generate phenotype simulation parameters
SP <- param.pheno(
SP = SP,
phe.model = list(
tr1 = "T1 = A + E", # "T1" (Trait 1) consists of Additive effect and Residual effect
tr2 = "T2 = A + E" # "T2" (Trait 2) consists of Additive effect and Residual effect
),
# phe.var = list(tr1 = 100, tr2 = 100),
phe.h2A = list(tr1 = 0.3, tr2 = 0.3),
phe.corA = matrix(c(1, 0.5, 0.5, 1), 2, 2) # Additive genetic correlation
)
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
Geometric distribution is the probability of success for the first time obtained only after K trials among the N Bernoulli trials. Geometric distribution can be used as a QTN effect distribution. Phenotype controlled by QTNs subject to Geometric distribution in single-trait simulation is displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(
pop.marker = 1e4,
qtn.num = list(tr1 = 10),
qtn.model = "A",
qtn.dist = list(tr1 = "geom"),
qtn.prob = list(tr1 = 0.5)
)
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2) # random genotype
# Generate phenotype simulation parameters
SP <- param.pheno(
SP = SP,
phe.model = list(tr1 = "T1 = A + E"), # "T1" (Trait 1) consists of Additive effect and Residual effect
# phe.var = list(tr1 = 100),
phe.h2A = list(tr1 = 0.3)
)
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
Phenotype controlled by QTNs subject to Geometric distribution in multiple-trait simulation is displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(
pop.marker = 1e4,
qtn.num = list(tr1 = 10, tr2 = 10),
qtn.model = "A",
qtn.dist = list(tr1 = "geom", tr2 = "geom"),
qtn.prob = list(tr1 = 0.5, tr2 = 0.5)
)
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2) # random genotype
# Generate phenotype simulation parameters
SP <- param.pheno(
SP = SP,
phe.model = list(
tr1 = "T1 = A + E", # "T1" (Trait 1) consists of Additive effect and Residual effect
tr2 = "T2 = A + E" # "T2" (Trait 2) consists of Additive effect and Residual effect
),
# phe.var = list(tr1 = 100, tr2 = 100),
phe.h2A = list(tr1 = 0.3, tr2 = 0.3),
phe.corA = matrix(c(1, 0.5, 0.5, 1), 2, 2) # Additive genetic correlation
)
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
Gamma distribution is the sum of N independent exponential random variables. Note that Exponential distribution is a special form of Gamma distribution when qtn.shape = 1
and qtn.scale = 1
. Phenotype controlled by QTNs subject to Gamma distribution in single-trait simulation is displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(
pop.marker = 1e4,
qtn.num = list(tr1 = 10),
qtn.model = "A",
qtn.dist = list(tr1 = "gamma"),
qtn.shape = list(tr1 = 1),
qtn.scale = list(tr1 = 1)
)
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2) # random genotype
# Generate phenotype simulation parameters
SP <- param.pheno(
SP = SP,
phe.model = list(tr1 = "T1 = A + E"), # "T1" (Trait 1) consists of Additive effect and Residual effect
# phe.var = list(tr1 = 100),
phe.h2A = list(tr1 = 0.3)
)
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
Phenotype controlled by QTNs subject to Gamma distribution in multiple-trait simulation is displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(
pop.marker = 1e4,
qtn.num = list(tr1 = 10, tr2 = 10),
qtn.model = "A",
qtn.dist = list(tr1 = "gamma", tr2 = "gamma"),
qtn.shape = list(tr1 = 1, tr2 = 1),
qtn.scale = list(tr1 = 1, tr2 = 1)
)
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2) # random genotype
# Generate phenotype simulation parameters
SP <- param.pheno(
SP = SP,
phe.model = list(
tr1 = "T1 = A + E", # "T1" (Trait 1) consists of Additive effect and Residual effect
tr2 = "T2 = A + E" # "T2" (Trait 2) consists of Additive effect and Residual effect
),
# phe.var = list(tr1 = 100, tr2 = 100),
phe.h2A = list(tr1 = 0.3, tr2 = 0.3),
phe.corA = matrix(c(1, 0.5, 0.5, 1), 2, 2) # Additive genetic correlation
)
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
Beta distribution is a density function of conjugate prior distribution as Bernoulli distribution and Binomial distribution. Phenotype controlled by QTNs subject to the Beta distribution in single-trait simulation is displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(
pop.marker = 1e4,
qtn.num = list(tr1 = 10),
qtn.model = "A",
qtn.dist = list(tr1 = "beta"),
qtn.shape1 = list(tr1 = 1),
qtn.shape2 = list(tr1 = 1),
qtn.ncp = list(tr1 = 0)
)
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2) # random genotype
# Generate phenotype simulation parameters
SP <- param.pheno(
SP = SP,
phe.model = list(tr1 = "T1 = A + E"), # "T1" (Trait 1) consists of Additive effect and Residual effect
# phe.var = list(tr1 = 100),
phe.h2A = list(tr1 = 0.3)
)
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
Phenotype controlled by QTNs subject to Beta distribution in multiple-trait simulation is displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(
pop.marker = 1e4,
qtn.num = list(tr1 = 10, tr2 = 10),
qtn.model = "A",
qtn.dist = list(tr1 = "beta", tr2 = "beta"),
qtn.shape1 = list(tr1 = 1, tr2 = 1),
qtn.shape2 = list(tr1 = 1, tr2 = 1),
qtn.ncp = list(tr1 = 0, tr2 = 0)
)
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2) # random genotype
# Generate phenotype simulation parameters
SP <- param.pheno(
SP = SP,
phe.model = list(
tr1 = "T1 = A + E", # "T1" (Trait 1) consists of Additive effect and Residual effect
tr2 = "T2 = A + E" # "T2" (Trait 2) consists of Additive effect and Residual effect
),
# phe.var = list(tr1 = 100, tr2 = 100),
phe.h2A = list(tr1 = 0.3, tr2 = 0.3),
phe.corA = matrix(c(1, 0.5, 0.5, 1), 2, 2) # Additive genetic correlation
)
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
SIMER
supports adding Fixed effects, Covariates, and Environmental Random effects to a phenotype. Users should prepare a list of environmental factors setting. Fixed effects, Covariates , and Environmental Random effects are determined by effect
, slope
, and ratio
respectively. A phenotype with Fixed effect, Covariate, and Environmental Random effect in single-trait simulation is displayed as follows:
If users want to output files, please see File output.
# Prepare environmental factor list
pop.env <- list(
F1 = list( # fixed effect 1
level = c("1", "2"),
effect = list(tr1 = c(50, 30))
),
F2 = list( # fixed effect 2
level = c("d1", "d2", "d3"),
effect = list(tr1 = c(10, 20, 30))
),
C1 = list( # covariate 1
level = c(70, 80, 90),
slope = list(tr1 = 1.5)
),
R1 = list( # random effect 1
level = c("l1", "l2", "l3"),
ratio = list(tr1 = 0.1)
)
)
# Generate genotype simulation parameters
SP <- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10), qtn.model = "A")
# Generate annotation simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2) # random genotype
# Generate phenotype simulation parameters
SP <- param.pheno(
SP = SP,
pop.env = pop.env,
phe.model = list(tr1 = "T1 = A + F1 + F2 + C1 + R1 + E"), # "T1" (Trait 1) consists of Additive effect, F1, F2, C1, R1, and Residual effect
# phe.var = list(tr1 = 100),
phe.h2A = list(tr1 = 0.3)
)
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
A phenotype with Fixed effect, Covariate, and Environmental Random effect in multiple-trait simulation is displayed as follows:
If users want to output files, please see File output.
# Prepare environmental factor list
pop.env <- list(
F1 = list( # fixed effect 1
level = c("1", "2"),
effect = list(tr1 = c(50, 30), tr2 = c(50, 30))
),
F2 = list( # fixed effect 2
level = c("d1", "d2", "d3"),
effect = list(tr1 = c(10, 20, 30), tr2 = c(10, 20, 30))
),
C1 = list( # covariate 1
level = c(70, 80, 90),
slope = list(tr1 = 1.5, tr2 = 1.5)
),
R1 = list( # random effect 1
level = c("l1", "l2", "l3"),
ratio = list(tr1 = 0.1, tr2 = 0.1)
)
)
# Generate genotype simulation parameters
SP <- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10, tr2 = 10), qtn.model = "A")
# Generate annotation simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2) # random genotype
# Generate phenotype simulation parameters
SP <- param.pheno(
SP = SP,
pop.env = pop.env,
phe.model = list(
tr1 = "T1 = A + F1 + F2 + C1 + R1 + E", # "T1" (Trait 1) consists of Additive effect, F1, F2, C1, R1, and Residual effect
tr2 = "T2 = A + F1 + F2 + C1 + R1 + E" # "T2" (Trait 1) consists of Additive effect, F1, F2, C1, R1, and Residual effect
),
# phe.var = list(tr1 = 100, tr2 = 100),
phe.h2A = list(tr1 = 0.3, tr2 = 0.3),
phe.corA = matrix(c(1, 0.5, 0.5, 1), 2, 2) # Additive genetic correlation
)
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
In a “GxE” model, SIMER
adds a Genetic-Environmental interaction effect to the phenotype. Users should prepare the Genetic QTN effect in the Annotation data and environmental factor by pop.env
to generate a Genetic-Environmental Individual effect. An example of a Genetic-Environmental interaction in a single-trait simulation is displayed as follows:
If users want to output files, please see File output.
# Prepare environmental factor list
pop.env <- list(
F1 = list( # fixed effect 1
level = c("1", "2"),
effect = list(tr1 = c(50, 30))
),
F2 = list( # fixed effect 2
level = c("d1", "d2", "d3"),
effect = list(tr1 = c(10, 20, 30))
),
C1 = list( # covariate 1
level = c(70, 80, 90),
slope = list(tr1 = 1.5)
),
R1 = list( # random effect 1
level = c("l1", "l2", "l3"),
ratio = list(tr1 = 0.1)
)
)
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10), qtn.model = "A") # Additive effect
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2) # random genotype
# Generate phenotype simulation parameters
SP <- param.pheno(
SP = SP,
pop.env = pop.env,
phe.model = list(
tr1 = "T1 = A + F1 + F2 + C1 + R1 + A:F1 + E" # "T1" (Trait 1) consists of Additive effect, F1, F2, C1, R1, Additive-F1 interaction effect, and Residual effect
),
# phe.var = list(tr1 = 100),
phe.h2A = list(tr1 = 0.3),
phe.h2GxE = list(tr1 = list("A:F1" = 0.1))
)
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
An example of Genetic-Environmental interaction in multiple-trait simulation is displayed as follows:
If users want to output files, please see File output.
# Prepare environmental factor list
pop.env <- list(
F1 = list( # fixed effect 1
level = c("1", "2"),
effect = list(tr1 = c(50, 30), tr2 = c(50, 30))
),
F2 = list( # fixed effect 2
level = c("d1", "d2", "d3"),
effect = list(tr1 = c(10, 20, 30), tr2 = c(10, 20, 30))
),
C1 = list( # covariate 1
level = c(70, 80, 90),
slope = list(tr1 = 1.5, tr2 = 1.5)
),
R1 = list( # random effect 1
level = c("l1", "l2", "l3"),
ratio = list(tr1 = 0.1, tr2 = 0.1)
)
)
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10, tr2 = 10), qtn.model = "A") # Additive effect
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2) # random genotype
# Generate phenotype simulation parameters
SP <- param.pheno(
SP = SP,
pop.env = pop.env,
phe.model = list(
tr1 = "T1 = A + F1 + F2 + C1 + R1 + A:F1 + E", # "T1" (Trait 1) consists of Additive effect, F1, F2, C1, R1, Additive-F1 interaction effect, and Residual effect
tr2 = "T2 = A + F1 + F2 + C1 + R1 + A:F1 + E" # "T2" (Trait 2) consists of Additive effect, F1, F2, C1, R1, Additive-F1 interaction effect, and Residual effect
),
# phe.var = list(tr1 = 100, tr2 = 100),
phe.h2A = list(tr1 = 0.3, tr2 = 0.3),
phe.h2GxE = list(tr1 = list("A:F1" = 0.1), tr2 = list("A:F1" = 0.1)),
phe.corA = matrix(c(1, 0.5, 0.5, 1), 2, 2) # Additive genetic correlation
)
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
In an “ExE” model, SIMER
adds Environmental-Environmental interaction effect to phenotype. Users should prepare environmental factor by pop.env
for generating Environmental-Environmental Individual effect. An example of Environmental-Environmental interaction in single-trait simulation is displayed as follows:
If users want to output files, please see File output.
# Prepare environmental factor list
pop.env <- list(
F1 = list( # fixed effect 1
level = c("1", "2"),
effect = list(tr1 = c(50, 30))
),
F2 = list( # fixed effect 2
level = c("d1", "d2", "d3"),
effect = list(tr1 = c(10, 20, 30))
),
C1 = list( # covariate 1
level = c(70, 80, 90),
slope = list(tr1 = 1.5)
),
R1 = list( # random effect 1
level = c("l1", "l2", "l3"),
ratio = list(tr1 = 0.1)
)
)
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10), qtn.model = "A") # Additive effect
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2) # random genotype
# Generate phenotype simulation parameters
SP <- param.pheno(
SP = SP,
pop.env = pop.env,
phe.model = list(
tr1 = "T1 = A + F1 + F2 + C1 + R1 + F1:R1 + E" # "T1" (Trait 1) consists of Additive effect, F1, F2, C1, R1, F1-R1 interaction effect, and Residual effect
),
# phe.var = list(tr1 = 100),
phe.h2A = list(tr1 = 0.3),
phe.h2GxE = list(tr1 = list("F1:R1" = 0.1))
)
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
An example of Environmental-Environmental interaction in multiple-trait simulation is displayed as follows:
If users want to output files, please see File output.
# Prepare environmental factor list
pop.env <- list(
F1 = list( # fixed effect 1
level = c("1", "2"),
effect = list(tr1 = c(50, 30), tr2 = c(50, 30))
),
F2 = list( # fixed effect 2
level = c("d1", "d2", "d3"),
effect = list(tr1 = c(10, 20, 30), tr2 = c(10, 20, 30))
),
C1 = list( # covariate 1
level = c(70, 80, 90),
slope = list(tr1 = 1.5, tr2 = 1.5)
),
R1 = list( # random effect 1
level = c("l1", "l2", "l3"),
ratio = list(tr1 = 0.1, tr2 = 0.1)
)
)
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10, tr2 = 10), qtn.model = "A") # Additive effect
# Generate genotype simulation parameters
# SP <- param.geno(SP = SP, pop.geno = pop.geno) # external genotype
SP <- param.geno(SP = SP, pop.ind = 1e2) # random genotype
# Generate phenotype simulation parameters
SP <- param.pheno(
SP = SP,
pop.env = pop.env,
phe.model = list(
tr1 = "T1 = A + F1 + F2 + C1 + R1 + F1:R1 + E", # "T1" (Trait 1) consists of Additive effect, F1, F2, C1, R1, F1:R1 interaction effect, and Residual effect
tr2 = "T2 = A + F1 + F2 + C1 + R1 + F1:R1 + E" # "T2" (Trait 2) consists of Additive effect, F1, F2, C1, R1, F1:R1 interaction effect, and Residual effect
),
# phe.var = list(tr1 = 100, tr2 = 100),
phe.h2A = list(tr1 = 0.3, tr2 = 0.3),
phe.h2GxE = list(tr1 = list("F1:R1" = 0.1), tr2 = list("F1:R1" = 0.1)),
phe.corA = matrix(c(1, 0.5, 0.5, 1), 2, 2) # Additive genetic correlation
)
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
In the single-trait simulation, the trait can be controlled by varied QTN effect distribution. An example of the single-trait controlled by two-group QTNs is displayed as follows:
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(
pop.marker = 1e4,
qtn.num = list(tr1 = c(2, 8)), # Group1: 2 QTNs; Group 2: 8 QTNs
qtn.dist = list(tr1 = c("norm", "norm")),
qtn.var = list(tr1 = c(1, 1)), # Group1: genetic variance of QTNs = 1; Group2: genetic variance of QTNs = 1
qtn.model = "A"
)
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2) # random genotype
# Generate phenotype simulation parameters
SP <- param.pheno(
SP = SP,
phe.model = list(tr1 = "T1 = A + E"), # "T1" (Trait 1) consists of Additive effect and Residual effect
# phe.var = list(tr1 = 100),
phe.h2A = list(tr1 = 0.3)
)
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
SIMER
imitates the reproductive process of organisms to generate a Multiple-Generation population. The genotype data and phenotype data of the population are screened by single-trait selection or multiple-trait selection, and then those data are amplified by species-specific reproduction.
selects
, main function of Selection:
Paramater | Default | Options | Description |
pop.sel | NULL | list | the selected males and females. |
ps | c(0.8, 0.8) | num vector | if ps <= 1, fraction selected in selection of males and females; if ps > 1, ps is number of selected males and females. |
decr | TRUE | TRUE or FALSE | whether the sort order is decreasing. |
sel.crit | ‘pheno’ | character | the selection criteria, it can be ‘TBV’, ‘TGV’, and ‘pheno’. |
sel.single | ‘comb’ | character | the single-trait selection method, it can be ‘ind’, ‘fam’, ‘infam’, and ‘comb’. |
sel.multi | ‘index’ | character | the multiple-trait selection method, it can be ‘index’, ‘indcul’, and ‘tmd’. |
index.wt | c(0.5, 0.5) | num vector | the weight of each trait for multiple-trait selection. |
index.tdm | 1 | num | the index of tandem selection for multiple-trait selection. |
goal.perc | 0.1 | num | the percentage of goal more than the mean of scores of individuals. |
pass.perc | 0.9 | num | the percentage of expected excellent individuals. |
reproduces
, main function of Reproduction:
Paramater | Default | Options | Description |
pop.gen | 2 | num | the generations of simulated population. |
reprod.way | ‘randmate’ | character | reproduction method, it consists of ‘clone’, ‘dh’, ‘selfpol’, ‘randmate’, ‘randexself’, ‘assort’, ‘disassort’, ‘2waycro’, ‘3waycro’, ‘4waycro’, ‘backcro’, and ‘userped’. |
sex.rate | 0.5 | num | the male rate in the population. |
prog | 2 | num | the progeny number of an individual. |
Individual selection is a selection method based on the phenotype of individual traits, which is also known as mixed selection or collective selection. This selection method is simple and easy to use for traits with high heritability.
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4)
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2)
# Generate phenotype simulation parameters
SP <- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
# Generate selection parameters
SP <- param.sel(SP = SP, sel.single = "ind")
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
# Run selection
SP <- selects(SP)
Family selection is a selection method by family based on the average of the family. This selection method is used for traits with low heritability.
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4)
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2)
# Generate phenotype simulation parameters
SP <- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
# Generate selection parameters
SP <- param.sel(SP = SP, sel.single = "fam")
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
# Run selection
SP <- selects(SP)
Within-family selection is a selection method based on the deviation of individual phenotype and family mean value in each family. This selection method is used for traits with low heritability and small families.
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4)
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2)
# Generate phenotype simulation parameters
SP <- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
# Generate selection parameters
SP <- param.sel(SP = SP, sel.single = "infam")
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
# Run selection
SP <- selects(SP)
Combined selection is a selection method based on weighed combination of the deviation of individual phenotype and family mean value.
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4)
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2)
# Generate phenotype simulation parameters
SP <- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
# Generate selection parameters
SP <- param.sel(SP = SP, sel.single = "comb")
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
# Run selection
SP <- selects(SP)
Tandem selection is a method for sequentially selecting a plurality of target traits one by one. The index of the selected trait is index.tdm
and this parameter should not be controlled by Users.
If users want to output files, please see File output.
# Generate genotype simulation parameters
SP <- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10, tr2 = 10))
# Generate annotation simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2)
# Generate phenotype simulation parameters
SP <- param.pheno(
SP = SP,
# phe.var = list(tr1 = 100, tr2 = 100),
phe.model = list(
tr1 = "T1 = A + E",
tr2 = "T2 = A + E"
)
)
# Generate selection parameters
SP <- param.sel(SP = SP, sel.multi = "tdm")
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
# Run selection
SP <- selects(SP)
Set a minimum selection criterion for each target trait. Then a Independent culling selection will eliminate this individual when the candidate’s performance on any trait is lower than the corresponding criteria.
If users want to output files, please see File output.
# Generate genotype simulation parameters
SP <- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10, tr2 = 10))
# Generate annotation simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2)
# Generate phenotype simulation parameters
SP <- param.pheno(
SP = SP,
# phe.var = list(tr1 = 100, tr2 = 100),
phe.model = list(
tr1 = "T1 = A + E",
tr2 = "T2 = A + E"
)
)
# Generate selection parameters
SP <- param.sel(SP = SP, sel.multi = "indcul")
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
# Run selection
SP <- selects(SP)
Index selection is a comprehensive selection that will consider several traits based on their respective heritabilities, phenotypic variances, economic weights, corresponding genetic correlations, and phenotypes. Then, SIMER
calculates the index value of each trait, eliminates it, or selects it according to its level. Users can set the weight of each trait at index.wt
.
If users want to output files, please see File output.
# Generate genotype simulation parameters
SP <- param.annot(pop.marker = 1e4, qtn.num = list(tr1 = 10, tr2 = 10))
# Generate annotation simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2)
# Generate phenotype simulation parameters
SP <- param.pheno(
SP = SP,
# phe.var = list(tr1 = 100, tr2 = 100),
phe.model = list(
tr1 = "T1 = A + E",
tr2 = "T2 = A + E"
)
)
# Generate selection parameters
SP <- param.sel(SP = SP, sel.multi = "index")
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
# Run selection
SP <- selects(SP)
Clone is a sexual reproduction method that does not involve germ cells and does not require a process of fertilization, but directly forms a new individual’s reproductive mode from a part of the mother. Sex of offspring will be 0 in the clone
.
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4)
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2)
# Generate phenotype simulation parameters
SP <- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
# Generate selection parameters
SP <- param.sel(SP = SP, sel.single = "ind")
# Generate reproduction parameters
SP <- param.reprod(SP = SP, reprod.way = "clone")
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
# Run selection
SP <- selects(SP)
# Run reproduction
SP <- reproduces(SP)
Doubled haploid is a reproduction method for breeding workers to obtain haploid plants. It induces a doubling of the number of chromosomes and restores the number of chromosomes in normal plants. Sex of offspring will be 0 in dh
.
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4)
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2)
# Generate phenotype simulation parameters
SP <- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
# Generate selection parameters
SP <- param.sel(SP = SP, sel.single = "ind")
# Generate reproduction parameters
SP <- param.reprod(SP = SP, reprod.way = "dh")
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
# Run selection
SP <- selects(SP)
# Run reproduction
SP <- reproduces(SP)
Self-pollination refers to the combination of male and female gametes from the same individual or between individuals from the same clonal breeding line. Sex of offspring will be 0 in selfpol
.
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4)
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2)
# Generate phenotype simulation parameters
SP <- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
# Generate selection parameters
SP <- param.sel(SP = SP, sel.single = "ind")
# Generate reproduction parameters
SP <- param.reprod(SP = SP, reprod.way = "selfpol")
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
# Run selection
SP <- selects(SP)
# Run reproduction
SP <- reproduces(SP)
In random mating, any female or male individual has the same probability to mate with any member of opposite sex in a sexually reproducing organism. Sex of offspring in random mating is controlled by sex.ratio
in randmate
.
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4)
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2)
# Generate phenotype simulation parameters
SP <- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
# Generate selection parameters
SP <- param.sel(SP = SP, sel.single = "ind")
# Generate reproduction parameters
SP <- param.reprod(SP = SP, reprod.way = "randmate")
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
# Run selection
SP <- selects(SP)
# Run reproduction
SP <- reproduces(SP)
In random mating excluding self-pollination, an individual cannot mate with itself. Sex of offspring in random mating is controlled by sex.ratio
in randexself
.
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4)
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2)
# Generate phenotype simulation parameters
SP <- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
# Generate selection parameters
SP <- param.sel(SP = SP, sel.single = "ind")
# Generate reproduction parameters
SP <- param.reprod(SP = SP, reprod.way = "randexself")
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
# Run selection
SP <- selects(SP)
# Run reproduction
SP <- reproduces(SP)
In assortative mating, mated pairs are of the same phenotype more often than would occur by chance. Sex of offspring in assortative mating is controlled by sex.ratio
in assort
.
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4)
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2)
# Generate phenotype simulation parameters
SP <- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
# Generate selection parameters
SP <- param.sel(SP = SP, sel.single = "ind")
# Generate reproduction parameters
SP <- param.reprod(SP = SP, reprod.way = "assort")
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
# Run selection
SP <- selects(SP)
# Run reproduction
SP <- reproduces(SP)
In disassortative mating, mated pairs are of the same phenotype less often than would occur by chance. Sex of offspring in disassortative mating is controlled by sex.ratio
in disassort
.
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4)
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2)
# Generate phenotype simulation parameters
SP <- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
# Generate selection parameters
SP <- param.sel(SP = SP, sel.single = "ind")
# Generate reproduction parameters
SP <- param.reprod(SP = SP, reprod.way = "disassort")
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
# Run selection
SP <- selects(SP)
# Run reproduction
SP <- reproduces(SP)
The Two-way cross method needs to use sex to distinguish two different breeds, in which the first breed is sire and the second breed is dam.
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4)
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2)
# Generate phenotype simulation parameters
SP <- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
# Generate selection parameters
SP <- param.sel(SP = SP, sel.single = "ind")
# Generate reproduction parameters
SP <- param.reprod(SP = SP, reprod.way = "2waycro")
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
# Two different breeds are cut by sex
SP$pheno$pop$gen1$sex <- rep(c(1, 2), c(50, 50))
# Run selection
SP <- selects(SP)
# Run reproduction
SP <- reproduces(SP)
The Three-way cross method needs to use sex to distinguish three different breeds, in which the first breed is sire and the second breed is dam in the first two-way cross, and the third breed is terminal sire.
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4)
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2)
# Generate phenotype simulation parameters
SP <- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
# Generate selection parameters
SP <- param.sel(SP = SP, sel.single = "ind")
# Generate reproduction parameters
SP <- param.reprod(SP = SP, reprod.way = "3waycro")
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
# Three different breeds are cut by sex
SP$pheno$pop$gen1$sex <- rep(c(1, 2, 1), c(30, 30, 40))
# Run selection
SP <- selects(SP)
# Run reproduction
SP <- reproduces(SP)
The Four-way cross method needs to use sex to distinguish four different breeds, in which the first breed is sire and the second breed is dam in the first two-way cross, the third breed is sire and the fourth breed is dam in the second two-way cross.
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4)
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2)
# Generate phenotype simulation parameters
SP <- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
# Generate selection parameters
SP <- param.sel(SP = SP, sel.single = "ind")
# Generate reproduction parameters
SP <- param.reprod(SP = SP, reprod.way = "4waycro")
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
# Three different breeds are cut by sex
SP$pheno$pop$gen1$sex <- rep(c(1, 2, 1, 2), c(25, 25, 25, 25))
# Run selection
SP <- selects(SP)
# Run reproduction
SP <- reproduces(SP)
The Back cross method needs to use sex to distinguish two different breeds, in which the first breed is always sire in each generation and the second breed is dam in the first two-way cross.
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4)
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2)
# Generate phenotype simulation parameters
SP <- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
# Generate selection parameters
SP <- param.sel(SP = SP, sel.single = "ind")
# Generate reproduction parameters
SP <- param.reprod(SP = SP, reprod.way = "backcro")
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
# Two different breeds are cut by sex
SP$pheno$pop$gen1$sex <- rep(c(1, 2), c(50, 50))
# Run selection
SP <- selects(SP)
# Run reproduction
SP <- reproduces(SP)
User-designed pedigree mating needs a specific user-designed pedigree to control the mating process. The first column is sample id, the second column is paternal id, and the third column is maternal id. Please make sure that paternal id and maternal id can match the genotype data.
If users want to output files, please see File output.
# Generate annotation simulation parameters
SP <- param.annot(pop.marker = 1e4)
# Generate genotype simulation parameters
SP <- param.geno(SP = SP, pop.ind = 1e2)
# Generate phenotype simulation parameters
SP <- param.pheno(SP = SP, phe.h2A = list(tr1 = 0.3))
# Generate reproduction parameters
SP <- param.reprod(SP = SP, reprod.way = "userped")
# Run annotation simulation
SP <- annotation(SP)
# Run genotype simulation
SP <- genotype(SP)
# Run phenotype simulation
SP <- phenotype(SP)
# Run reproduction
SP <- reproduces(SP)
The above methods are to generate populations step by step, which are easy to understand. Actually, SIMER
can generate a population directly in a MORE CONVENIENT way.
If users want to output files, please see File output.
# Generate all simulation parameters
SP <- param.simer(qtn.num = list(tr1 = 10), pop.marker = 1e4, pop.ind = 1e2, sel.single = "comb", reprod.way = "randmate")
# Run Simer
SP <- simer(SP)
After generating a population, further work can be done. Breeders wish to evaluate their Breeding Program Design. To save money and time, SIMER
can assist breeders to evaluate their Breeding Program Design by simulation.
simer.Data.Json
, main function of Breeding Program Design:
Paramater | Default | Options | Description |
jsonFile | NULL | character | the path of JSON file. |
hiblupPath | ’’ | character | the path of HIBLUP software. |
out | ‘simer.qc’ | character | the prefix of output files. |
dataQC | TRUE | TRUE or FALSE | whether to make data quality control. |
buildModel | TRUE | TRUR or FALSE | whether to build EBV model. |
buildIndex | TRUE | TRUR or FALSE | whether to build Selection Index. |
ncpus | 10 | num | the number of threads used, if NULL, (logical core number - 1) is automatically used. |
verbose | TRUE | TRUE or FALSE | whether to print detail. |
Breeding program design should be stored on a JSON file. > plan1.json
>> genotype: the absolute path or relative path to JSON file of genotype data
>> pedigree: the filename with absolute path or relative path to JSON file of pedigree data
>> selection_index: the economic weight of phenotype for each trait
>> threads: the threads number used in multiple threads computation
>> genetic_progress: the genetic progress of a breeding plan
>> breeding_value_index: the economic weight of breeding value for each trait
>> auto_optimization: optimizing EBV estimated model and selection index automatically
>> quality_control_plan: the quality control plan for genotype, pedigree, and phenotype
genotype_quality_control: the quality control plan for genotype
> filter: the ‘filter’ (individual) condition for genotyped individual
> filter_geno: the genotype missing rate filter
> filter_mind the sample missing rate filter
> filter_maf the Minor Allele Frequency filter
> filter_hwe the Hardy-Weinberg Equilibrium filter
pedigree_quality_control: the quality control plan for pedigree
> standard_ID: whether ID is standard 15-digit ID
> candidate_sire_file: the filename of candidate sire
> candidate_dam_file: the filename of candidate dam
> exclude_threshold: if the number of base error is more than this threshold, this individual will be excluded
> assign_threshold: if the number of base error is less than this threshold, this parent will be assigned to this individual
phenotype_quality_control: the quality control plan for phenotype
> job_name: the name of phenotype quality control job
> sample_info: the filename with absolute path or relative path to JSON file of phenotype data
> repeated_records: whether phenotype data contains repeated records
> multi_trait: whether phenotype data contains multiple traits
> filter: the ‘filter’ (individual) condition for phenotyped individual
> select: the ‘select’ (trait) condition for phenotyped individual
> arrange: the ‘arrange’ (order) condition for phenotyped individual
> job_traits: the trait need quality control and its definition and range
breeding_plan: the genetic evaluation plan
> job_name: the name of phenotype quality control job
> sample_info: the filename with absolute path or relative path to JSON file of phenotype data
> repeated_records: whether phenotype data contains repeated records
> multi_trait: whether phenotype data contains multiple traits
> vc_vars: the filename of variance component data
> vc_covars: the filename of covariance component data
> random_ratio: the least random effect ratio to phenotype variance
> job_traits: the trait need analysis and its covariate, fixed effect, and random effect
{
"genotype": "../02plinkb",
"pedigree": "../05others/pedigree.txt",
"selection_index": "100 - 0.2 * T1 + 0.8 * T2",
"threads": 16,
"genetic_progress": [],
"breeding_value_index": "-0.2 * T1 + 0.8 * T2",
"auto_optimization": true,
"quality_control_plan": {
"genotype_quality_control":{
"filter": "F1 == 'Male'",
"filter_geno": 0.1,
"filter_mind": 0.1,
"filter_maf": 0.05,
"filter_hwe": 0.001
},
"pedigree_quality_control":{
"standard_ID": false,
"candidate_sire_file": [],
"candidate_dam_file": [],
"exclude_threshold": 0.1,
"assign_threshold": 0.05
},
"phenotype_quality_control":[
{
"job_name": "Data_Quality_Control_Demo",
"sample_info": "../05others/phenotype.txt",
"repeated_records": false,
"multi_trait": true,
"filter": "F1 == 'Male'",
"job_traits": [
{
"traits": "T1",
"definition": "T1",
"range": []
},
{
"traits": "T2",
"definition": "T2",
"range": []
}
]
}
]
},
"breeding_plan":[
{
"job_name": "EBV_Model_Demo",
"sample_info": "../05others/phenotype.txt",
"repeated_records": false,
"multi_trait": true,
"vc_vars": [],
"vc_covars": [],
"random_ratio": 0.05,
"job_traits": [
{
"traits": "T1",
"covariates": [],
"fixed_effects": ["F1", "F2"],
"random_effects": ["R1"]
},
{
"traits": "T2",
"covariates": [],
"fixed_effects": ["F1", "F2"],
"random_effects": ["R1"]
}
]
}
]
}
To evaluate the breeding program design, SIMER
completes the following three tasks:
(1) Data quality control for genotype, pedigree, and phenotype
(2) Model optimization (i.e., the most suitable covariate, fixed effect, and random effect)
(3) Construction of Selection Index and calculation of Genetic Progress
# Get JSON file
jsonFile <- system.file("extdata", "04breeding_plan", "plan1.json", package = "simer")
# It needs 'plink' and 'hiblup' software
jsonList <- simer.Data.Json(jsonFile = jsonFile)
Users can use global parameters to control the population properties , the number of threads used for simulation, and the output of simulation data.
simer
, main function of simulation:
Paramater | Default | Options | Description |
replication | 1 | num | the replication times of simulation. |
seed.sim | random | num | simulation random seed. |
out | ‘simer’ | character | the prefix of output files. |
outpath | NULL | character | the path of output files, Simer writes files only if outpath is not ‘NULL’. |
out.format | ‘numeric’ | ‘numeric’ or ‘plink’ | ‘numeric’ or ‘plink’, the data format of output files. |
pop.gen | 2 | num | the generations of simulated population. |
out.geno.gen | 1:2 | num vector | the output generations of genotype data. |
out.pheno.gen | 1:2 | num vector | the output generations of phenotype data. |
useAllGeno | FALSE | TRUE or FALSE | whether to use all genotype data to simulate phenotype. |
ncpus | 0 | num | the number of threads used, if NULL, (logical core number - 1) is automatically used. |
verbose | TRUE | TRUE or FALSE | whether to print detail. |
Users can calculate the number of individuals per generation using IndPerGen
directly.
pop <- generate.pop(pop.ind = 100)
count.ind <- IndPerGen(pop = pop, pop.gen = 2, ps = c(0.8, 0.8), reprod.way = "randmate", sex.rate = 0.5, prog = 2)
SIMER
runs on multiple threads. Users can easily change the number of threads used for simulation by the following:
# Generate all simulation parameters
SP <- param.simer(out = "simer", ncpus = 2)
# Run Simer
SP <- simer(SP)
Simulation of multiple populations can be realized by for
by using R software.
# Replication times
rep <- 2
# Result list
SPs <- rep(list(NULL), rep)
for (i in 1:rep) {
# Generate all simulation parameters
SP <- param.simer(replication = i, seed.sim = i, out = "simer")
# Run Simer
SPs[[i]] <- simer(SP)
}
SIMER
will not output files by default. A series of files with the prefix out
will output when specifying outpath
.
### 01 Numeric Format ###
# Generate all simulation parameters
SP <- param.simer(
# SP = SP, # uncomment it when users already have a 'SP'
out = "simer",
outpath = getwd(),
out.format = "numeric"
)
# Run Simer
SP <- simer(SP)
### 02 PLINK Binary Format ###
# Generate all simulation parameters
SP <- param.simer(
# SP = SP, # uncomment it when users already have a 'SP'
out = "simer",
outpath = getwd(),
out.format = "plink"
)
# Run Simer
SP <- simer(SP)
Output of genotype and phenotype can be generation-selective using out.geno.gen
and out.pheno.gen
.
# Generate all simulation parameters
SP <- param.simer(out = "simer", outpath = getwd(), pop.gen = 2, out.geno.gen = 1:2, out.pheno.gen = 1:2)
# Run Simer
SP <- simer(SP)
SIMER
outputs data including annotation data, genotype data, and phenotype data in the following two format.
Numeric format:
simer.geno.ind
contains indice of genotyped individuals;
simer.geno.desc
and simer.geno.bin
contain genotype matrix of all individuals;
simer.map
contains input map with block information and recombination information;
simer.ped
contains pedigree of individuals;
simer.phe
contains phenotype of individuals.
PLINK Binary format:
simer.bim
contains marker information of genotype data;
simer.bed
contains genotype data in binary format;
simer.fam
contains sample information of genotype data;
simer.ped
contains pedigree of individuals;
simer.phe
contains phenotype of individuals.
Annotation data contains SNP name, Chromosome name, Base Position, ALT, REF, and the QTN genetic effect. Note that only markers selected as QTNs have values.
# Generate all simulation parameters
SP <- param.simer(out = "simer")
# Run Simer
SP <- simer(SP)
# Show annotation data
head(SP$map$pop.map)
SNP Chrom BP ALT REF QTN1_A
1 M1 1 130693 C A NA
2 M2 1 168793 G A NA
3 M3 1 286553 A T NA
4 M4 1 306913 C G NA
5 M5 1 350926 T A NA
6 M6 1 355889 A C NA
Genotype data is stored in big.matrix
format.
# Generate all simulation parameters
SP <- param.simer(out = "simer")
# Run Simer
SP <- simer(SP)
# Show genotype data
print(SP$geno$pop.geno)
$gen1
An object of class "big.matrix"
Slot "address":
<pointer: 0x00000000176f09e0>
$gen2
An object of class "big.matrix"
Slot "address":
<pointer: 0x00000000176ef940>
print(SP$geno$pop.geno$gen1[1:6, 1:6])
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0 2 0 1 0 2
[2,] 1 1 1 1 0 0
[3,] 0 1 2 2 1 0
[4,] 2 0 1 1 1 0
[5,] 2 1 0 1 2 1
[6,] 1 2 1 1 1 2
Phenotype data contains sample ID, generation index, family index, within-family index, sire, dam, sex, phenotype, TBV, TGV, and other effects.
# Generate all simulation parameters
SP <- param.simer(out = "simer")
# Run Simer
SP <- simer(SP)
# Show phenotype data
head(SP$pheno$pop$gen1)
index gen fam infam sir dam sex T1 T1_TBV T1_TGV T1_A_eff T1_E_eff
1 1 1 1 1 0 0 1 -0.4934935 -1.3507888 -1.3507888 -1.3507888 0.8572953
2 2 1 2 2 0 0 1 7.7710404 -1.6756353 -1.6756353 -1.6756353 9.4466757
3 3 1 3 3 0 0 1 -4.6567338 -2.2608387 -2.2608387 -2.2608387 -2.3958951
4 4 1 4 4 0 0 1 -5.9064589 -1.7394139 -1.7394139 -1.7394139 -4.1670450
5 5 1 5 5 0 0 1 -16.7438931 -2.8000846 -2.8000846 -2.8000846 -13.9438085
6 6 1 6 6 0 0 1 6.0043912 0.3413561 0.3413561 0.3413561 5.6630351
For SIMER:
Hope it will be coming soon!
For ADI model:
Kao, Chenhung, et al. "Modeling Epistasis of Quantitative Trait Loci Using Cockerham's Model." Genetics 160.3 (2002): 1243-1261.
For build.cov:
B. D. Ripley "Stochastic Simulation." Wiley-Interscience (1987): Page 98.
:sos: Question1: Failing to install “devtools”:
ERROR: configuration failed for package ‘git2r’
removing ‘/Users/acer/R/3.4/library/git2r’
ERROR: dependency ‘git2r’ is not available for package ‘devtools’
removing ‘/Users/acer/R/3.4/library/devtools’
:yum: Answer: Please try following codes in terminal:
apt-get install libssl-dev/unstable
:sos: Question2: When installing packages from Github with “devtools”, an error occurred:
Error in curl::curl_fetch_disk(url, x$path, handle = handle): Problem with the SSL CA cert (path? access rights?)
:yum: Answer: Please try following codes and then try agian.
Questions, suggestions, and bug reports are welcome and appreciated. :arrow_right: