gslnls: GSL Multi-Start Nonlinear Least-Squares Fitting

An R interface to nonlinear least-squares optimization with the GNU Scientific Library (GSL), see M. Galassi et al. (2009, ISBN:0954612078). The available trust region methods include the Levenberg-Marquardt algorithm with and without geodesic acceleration, the Steihaug-Toint conjugate gradient algorithm for large systems and several variants of Powell's dogleg algorithm. Multi-start optimization based on quasi-random samples is implemented using a modified version of the algorithm in Hickernell and Yuan (1997, OR Transactions). Bindings are provided to tune a number of parameters affecting the low-level aspects of the trust region algorithms. The interface mimics R's nls() function and returns model objects inheriting from the same class.

Version: 1.3.2
Depends: R (≥ 3.5)
Imports: stats, Matrix
Published: 2024-05-01
DOI: 10.32614/CRAN.package.gslnls
Author: Joris Chau [aut, cre]
Maintainer: Joris Chau <joris.chau at>
License: LGPL-3
NeedsCompilation: yes
SystemRequirements: GSL (>= 2.2)
Language: en-US
Materials: NEWS
In views: Optimization
CRAN checks: gslnls results


Reference manual: gslnls.pdf


Package source: gslnls_1.3.2.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): gslnls_1.3.2.tgz, r-oldrel (arm64): gslnls_1.3.2.tgz, r-release (x86_64): gslnls_1.3.2.tgz, r-oldrel (x86_64): gslnls_1.3.2.tgz
Old sources: gslnls archive

Reverse dependencies:

Reverse imports: germinationmetrics


Please use the canonical form to link to this page.