The goal of googlePolylines is to encode and decode coordinates using Google’s polyline encoding algorithm
Polyline encoding is a lossy compression algorithm that allows you to store a series of coordinates as a single string.
Encoded polylines are used by Google Maps to draw lines and polygons, and are therefore supported in the googleway package.
I am intending to update googleway
to support plotting
sf
objects using these encoded polylines.
The word lossy is important to keep in mind, as the encoding process could reduce precision of your data. If you are after highly accurate coordinates this process probably isn’t for you.
However, if you need to reduce the size of spatial objects/data, and want quicker plots (see the Benchmarking section), then this could help.
Encoding is split across two functions
encode(obj)
- designed for use on sf
objects and data.frames
encodeCoordinates(lon, lat)
- designed to encode
vectors of coordinatesGiven two vectors of longitude and latitude coordinates:
library(googlePolylines)
lon <- c(144.9709, 144.9713, 144.9715, 144.9719, 144.9728, 144.9732,
144.973, 144.9727, 144.9731, 144.9749, 144.9742)
lat <- c(-37.8075, -37.8076, -37.8076, -37.8078, -37.8079, -37.8079,
-37.8091, -37.8107, -37.8115, -37.8153, -37.8155)
encodeCoordinates(lon, lat)
## [1] "xgweFcsysZToA?g@f@oAPsD?oApFf@|Hz@`DmAvViJf@jC"
The encode()
function will attempt to find the lon &
lat columns inside a data.frame using regex matching. However, you can
also specify the columns of coordinates:
df <- data.frame(
lon = c(144.9709, 144.9713, 144.9715, 144.9719, 144.9728, 144.9732, 144.973, 144.9727, 144.9731, 144.9749, 144.9742),
lat = c(-37.8075, -37.8076, -37.8076, -37.8078, -37.8079, -37.8079, -37.8091, -37.8107, -37.8115, -37.8153, -37.8155)
)
encode(df)
## [1] "xgweFcsysZToA?g@f@oAPsD?oApFf@|Hz@`DmAvViJf@jC"
encode()
will currently work on sf
objects
with geometry types
It will not work on GEOMETRYCOLLECTION objects.
## Linking to GEOS 3.11.0, GDAL 3.5.3, PROJ 9.1.0; sf_use_s2() is TRUE
## Reading layer `nc' from data source
## `/Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library/sf/shape/nc.shp'
## using driver `ESRI Shapefile'
## Simple feature collection with 100 features and 14 fields
## Geometry type: MULTIPOLYGON
## Dimension: XY
## Bounding box: xmin: -84.32385 ymin: 33.88199 xmax: -75.45698 ymax: 36.58965
## Geodetic CRS: NAD27
## Simple feature collection with 5 features and 14 fields
## Geometry type: MULTIPOLYGON
## Dimension: XY
## Bounding box: xmin: -81.74107 ymin: 36.07282 xmax: -75.77316 ymax: 36.58965
## Geodetic CRS: NAD27
## AREA PERIMETER CNTY_ CNTY_ID NAME FIPS FIPSNO CRESS_ID BIR74 SID74
## 1 0.114 1.442 1825 1825 Ashe 37009 37009 5 1091 1
## 2 0.061 1.231 1827 1827 Alleghany 37005 37005 3 487 0
## 3 0.143 1.630 1828 1828 Surry 37171 37171 86 3188 5
## 4 0.070 2.968 1831 1831 Currituck 37053 37053 27 508 1
## 5 0.153 2.206 1832 1832 Northampton 37131 37131 66 1421 9
## NWBIR74 BIR79 SID79 NWBIR79 geometry
## 1 10 1364 0 19 MULTIPOLYGON (((-81.47276 3...
## 2 10 542 3 12 MULTIPOLYGON (((-81.23989 3...
## 3 208 3616 6 260 MULTIPOLYGON (((-80.45634 3...
## 4 123 830 2 145 MULTIPOLYGON (((-76.00897 3...
## 5 1066 1606 3 1197 MULTIPOLYGON (((-77.21767 3...
When used on an sf
object, an sfencoded
object is returned, with the encoded polylines replacing the
sf::st_geometry
column.
## Classes 'sfencoded' and 'data.frame': 100 obs. of 15 variables:
## $ AREA : num 0.114 0.061 0.143 0.07 0.153 0.097 0.062 0.091 0.118 0.124 ...
## $ PERIMETER: num 1.44 1.23 1.63 2.97 2.21 ...
## $ CNTY_ : num 1825 1827 1828 1831 1832 ...
## $ CNTY_ID : num 1825 1827 1828 1831 1832 ...
## $ NAME : chr "Ashe" "Alleghany" "Surry" "Currituck" ...
## $ FIPS : chr "37009" "37005" "37171" "37053" ...
## $ FIPSNO : num 37009 37005 37171 37053 37131 ...
## $ CRESS_ID : int 5 3 86 27 66 46 15 37 93 85 ...
## $ BIR74 : num 1091 487 3188 508 1421 ...
## $ SID74 : num 1 0 5 1 9 7 0 0 4 1 ...
## $ NWBIR74 : num 10 10 208 123 1066 ...
## $ BIR79 : num 1364 542 3616 830 1606 ...
## $ SID79 : num 0 3 6 2 3 5 2 2 2 5 ...
## $ NWBIR79 : num 19 12 260 145 1197 ...
## $ geometry :encoded_column of length 100; first element: List of 1
## ..$ : chr "u_d|EtsgpNmmFphLyEbcCibLf{Lk~H`bT}rNmjGihHd[kvL_lEzgBkl~@lyE`MnvCimCbmEqfAxnGieH~gEeTd_DmiCxvA_D|oAdwCidAtsKr_A"| __truncated__
## .. ..- attr(*, "sfc")= chr [1:3] "XY" "MULTIPOLYGON" "sfg"
## - attr(*, "encoded_column")= chr "geometry"
## - attr(*, "sfAttributes")=List of 7
## ..$ type: chr "MULTIPOLYGON"
## ..$ dim : chr "XY"
## ..$ bbox: 'bbox' Named num [1:4] -84.3 33.9 -75.5 36.6
## .. ..- attr(*, "names")= chr [1:4] "xmin" "ymin" "xmax" "ymax"
## ..$ epsg: int 4267
## ..$ proj: chr "+proj=longlat +datum=NAD27 +no_defs"
## ..$ prec: num 0
## ..$ n_em: int 0
## [1] "geometry"
## [[1]]
## [1] "u_d|EtsgpNmmFphLyEbcCibLf{Lk~H`bT}rNmjGihHd[kvL_lEzgBkl~@lyE`MnvCimCbmEqfAxnGieH~gEeTd_DmiCxvA_D|oAdwCidAtsKr_AjiEdwA~YztFggAjbCfrAwf@hrF~mBdd@bh@zsB`cCpgCt_@d{B"
## attr(,"sfc")
## [1] "XY" "MULTIPOLYGON" "sfg"
##
## attr(,"class")
## [1] "list"
As you can see, the geometry attributes are kept on the encoded
object. However, you can remove them by specifying
strip = TRUE
## Classes 'sfencodedLite' and 'data.frame': 100 obs. of 15 variables:
## $ AREA : num 0.114 0.061 0.143 0.07 0.153 0.097 0.062 0.091 0.118 0.124 ...
## $ PERIMETER: num 1.44 1.23 1.63 2.97 2.21 ...
## $ CNTY_ : num 1825 1827 1828 1831 1832 ...
## $ CNTY_ID : num 1825 1827 1828 1831 1832 ...
## $ NAME : chr "Ashe" "Alleghany" "Surry" "Currituck" ...
## $ FIPS : chr "37009" "37005" "37171" "37053" ...
## $ FIPSNO : num 37009 37005 37171 37053 37131 ...
## $ CRESS_ID : int 5 3 86 27 66 46 15 37 93 85 ...
## $ BIR74 : num 1091 487 3188 508 1421 ...
## $ SID74 : num 1 0 5 1 9 7 0 0 4 1 ...
## $ NWBIR74 : num 10 10 208 123 1066 ...
## $ BIR79 : num 1364 542 3616 830 1606 ...
## $ SID79 : num 0 3 6 2 3 5 2 2 2 5 ...
## $ NWBIR79 : num 19 12 260 145 1197 ...
## $ geometry :encoded_column of length 100; first element: List of 1
## ..$ : chr "u_d|EtsgpNmmFphLyEbcCibLf{Lk~H`bT}rNmjGihHd[kvL_lEzgBkl~@lyE`MnvCimCbmEqfAxnGieH~gEeTd_DmiCxvA_D|oAdwCidAtsKr_A"| __truncated__
## - attr(*, "encoded_column")= chr "geometry"
## [[1]]
## [1] "u_d|EtsgpNmmFphLyEbcCibLf{Lk~H`bT}rNmjGihHd[kvL_lEzgBkl~@lyE`MnvCimCbmEqfAxnGieH~gEeTd_DmiCxvA_D|oAdwCidAtsKr_AjiEdwA~YztFggAjbCfrAwf@hrF~mBdd@bh@zsB`cCpgCt_@d{B"
##
## attr(,"class")
## [1] "list"
The benefit of stripping the attributes is to reduce the size of the object, which can be useful for web plotting if bandwidth/data transfer speeds are an issue.
## nc enc encLite
## "139.8 Kb" "90.6 Kb" "52.6 Kb"
The two functions polyline_wkt
and
wkt_polylne
can be used to convert sfencoded
objects to and from well-known text.
## AREA PERIMETER CNTY_ CNTY_ID NAME FIPS FIPSNO CRESS_ID BIR74 SID74 NWBIR74
## 1 0.114 1.442 1825 1825 Ashe 37009 37009 5 1091 1 10
## BIR79 SID79 NWBIR79 geometry
## 1 1364 0 19 MULTIPOLYGON (((-81.472748 36....
## AREA PERIMETER CNTY_ CNTY_ID NAME FIPS FIPSNO CRESS_ID BIR74 SID74 NWBIR74
## 1 0.114 1.442 1825 1825 Ashe 37009 37009 5 1091 1 10
## BIR79 SID79 NWBIR79 geometry
## 1 1364 0 19 MULTIPOLYGON: erenEdma_NcvDgbCmhEw...
I’ve provided these functions to enable the conversion of encoded polylines into other geometry formats, should they be required by other packages.
sf
can read well-known text, so you can convert the wkt
object back to sf
/ sfc
objects
## Geometry set for 100 features
## Geometry type: MULTIPOLYGON
## Dimension: XY
## Bounding box: xmin: -84.32384 ymin: 33.88199 xmax: -75.45697 ymax: 36.58964
## CRS: NA
## First 5 geometries:
## MULTIPOLYGON (((-81.47275 36.23435, -81.54084 3...
## MULTIPOLYGON (((-81.23989 36.36536, -81.24068 3...
## MULTIPOLYGON (((-80.45634 36.24255, -80.47638 3...
## MULTIPOLYGON (((-76.00897 36.31959, -76.01734 3...
## MULTIPOLYGON (((-77.21766 36.24098, -77.23461 3...
## back to sf - use `as.data.frame` to remove sfencoded attributes
sf_wkt <- as.data.frame(wkt)
sf_wkt$geometry <- st_as_sfc(sf_wkt$geometry)
sf_wkt <- st_sf(sf_wkt)
head(sf_wkt[, c("AREA", "PERIMETER", "geometry")])
## Simple feature collection with 6 features and 2 fields
## Geometry type: MULTIPOLYGON
## Dimension: XY
## Bounding box: xmin: -81.74107 ymin: 36.07281 xmax: -75.77315 ymax: 36.58964
## CRS: NA
## AREA PERIMETER geometry
## 1 0.114 1.442 MULTIPOLYGON (((-81.47275 3...
## 2 0.061 1.231 MULTIPOLYGON (((-81.23989 3...
## 3 0.143 1.630 MULTIPOLYGON (((-80.45634 3...
## 4 0.070 2.968 MULTIPOLYGON (((-76.00897 3...
## 5 0.153 2.206 MULTIPOLYGON (((-77.21766 3...
## 6 0.097 1.670 MULTIPOLYGON (((-76.74506 3...
Use decode()
to decode polylines into coordinates. This
function will return a list of data.frames with lon/lat column.
polylines <- c(
"ohlbDnbmhN~suq@am{tAw`qsAeyhGvkz`@fge}A",
"ggmnDt}wmLgc`DesuQvvrLofdDorqGtzzV"
)
decode(polylines)
## [[1]]
## lat lon
## 1 26.774 -80.18999
## 2 18.466 -66.11799
## 3 32.321 -64.75700
## 4 26.774 -80.18999
##
## [[2]]
## lat lon
## 1 28.745 -70.57899
## 2 29.570 -67.51400
## 3 27.339 -66.66800
## 4 28.745 -70.57899
You will note that the encoded strings are different between the two
enc
objects created earlier. For example
## [1] FALSE FALSE
This results from the lossy-ness of the encoding.
However, the general shape of the information is preserved. These two
maps are plots of the enc
and enc2
objects
respectively:
library(googleway)
## You'll need a Google Map API key to run this code
mapKey <- "your_api_key"
google_map(key = mapKey) %>%
add_polygons(data = nc, polyline = "geometry", fill_colour = "#00FF00", fill_opacity = 0.2)
google_map(key = mapKey) %>%
add_polygons(data = enc2, polyline = "geometry", fill_colour = "#FF00FF", fill_opacity = 0.2)
This benchmark compares plotting an sf
object through
leaflet vs plotting the encoded object through
googleway
library(microbenchmark)
library(leaflet)
microbenchmark(
goog = {
google_map(key = mapKey) %>%
add_polygons(data = enc, polyline = "polyline")
},
leaf = {
leaflet() %>%
addTiles() %>%
addPolygons(data = nc)
},
times = 25
)
Unit: milliseconds
expr min lq mean median uq max neval
goog 5.457699 5.972203 6.379053 6.162676 6.467225 8.876789 100
leaf 29.915151 32.093100 34.251388 33.088324 34.629769 106.124047 100
These benchmarks don’t account for the time taken for the browswer to render the maps