bagged.outliertrees: Robust Explainable Outlier Detection Based on OutlierTree

Bagged OutlierTrees is an explainable unsupervised outlier detection method based on an ensemble implementation of the existing OutlierTree procedure (Cortes, 2020). This implementation takes advantage of bootstrap aggregating (bagging) to improve robustness by reducing the possible masking effect and subsequent high variance (similarly to Isolation Forest), hence the name "Bagged OutlierTrees". To learn more about the base procedure OutlierTree (Cortes, 2020), please refer to <doi:10.48550/arXiv.2001.00636>.

Version: 1.0.0
Depends: R (≥ 3.5.0)
Imports: outliertree, dplyr, doSNOW, parallel, foreach, rlist, data.table
Published: 2021-07-06
DOI: 10.32614/CRAN.package.bagged.outliertrees
Author: Rafael Santos [aut, cre]
Maintainer: Rafael Santos <rafael.jpsantos at>
License: MIT + file LICENSE
NeedsCompilation: no
Materials: README NEWS
CRAN checks: bagged.outliertrees results


Reference manual: bagged.outliertrees.pdf


Package source: bagged.outliertrees_1.0.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): bagged.outliertrees_1.0.0.tgz, r-oldrel (arm64): bagged.outliertrees_1.0.0.tgz, r-release (x86_64): bagged.outliertrees_1.0.0.tgz, r-oldrel (x86_64): bagged.outliertrees_1.0.0.tgz


Please use the canonical form to link to this page.