automl: Deep Learning with Metaheuristic

Fits from simple regression to highly customizable deep neural networks either with gradient descent or metaheuristic, using automatic hyper parameters tuning and custom cost function. A mix inspired by the common tricks on Deep Learning and Particle Swarm Optimization.

Version: 1.3.2
Imports: stats, utils, parallel
Suggests: datasets
Published: 2020-01-16
DOI: 10.32614/CRAN.package.automl
Author: Alex Boulangé [aut, cre]
Maintainer: Alex Boulangé <aboul at>
License: GPL-2 | GPL-3 [expanded from: GNU General Public License]
NeedsCompilation: no
Materials: README NEWS
CRAN checks: automl results


Reference manual: automl.pdf
Vignettes: howto_automl.pdf


Package source: automl_1.3.2.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): automl_1.3.2.tgz, r-oldrel (arm64): automl_1.3.2.tgz, r-release (x86_64): automl_1.3.2.tgz, r-oldrel (x86_64): automl_1.3.2.tgz
Old sources: automl archive


Please use the canonical form to link to this page.