VIGoR: Variational Bayesian Inference for Genome-Wide Regression

Conducts linear regression using variational Bayesian inference, particularly optimized for genome-wide association mapping and whole-genome prediction which use a number of DNA markers as the explanatory variables. Provides seven regression models which select the important variables (i.e., the variables related to response variables) among the given explanatory variables in different ways (i.e., model structures).

Version: 1.1.4
Published: 2024-05-28
DOI: 10.32614/CRAN.package.VIGoR
Author: Akio Onogi [aut, cre, cph], Hiroyoshi Iwata [cph], Takuji Nishimura [ctb] (Developer of Mersenne twister in header1.h), Makoto Matsumoto [ctb] (Developer of Mersenne twister in header1.h), STRUCTURE software contributors [ctb] (Provide snorm and RNormal functions in header2.h), Alan Miller [ctb] (Program mylgamma function in header2.h), Peter Beerli [ctb] (Translate mylgamma function in header2.h)
Maintainer: Akio Onogi <onogiakio at>
License: MIT + file LICENSE
NeedsCompilation: yes
CRAN checks: VIGoR results


Reference manual: VIGoR.pdf


Package source: VIGoR_1.1.4.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): VIGoR_1.1.4.tgz, r-oldrel (arm64): VIGoR_1.1.4.tgz, r-release (x86_64): VIGoR_1.1.4.tgz, r-oldrel (x86_64): VIGoR_1.1.4.tgz
Old sources: VIGoR archive


Please use the canonical form to link to this page.