COMBO: Correcting Misclassified Binary Outcomes in Association Studies

Use frequentist and Bayesian methods to estimate parameters from a binary outcome misclassification model. These methods correct for the problem of "label switching" by assuming that the sum of outcome sensitivity and specificity is at least 1. A description of the analysis methods is available in Hochstedler and Wells (2023) <doi:10.48550/arXiv.2303.10215>.

Version: 1.1.0
Depends: R (≥ 4.2.0)
Imports: dplyr (≥ 1.0.10), tidyr (≥ 1.2.1), Matrix (> 1.4-1), rjags (≥ 4-13), turboEM (≥ 2021.1), SAMBA (≥ 0.9.0), utils (≥ 4.2.0)
Suggests: knitr (≥ 1.40), testthat (≥ 3.0.0), devtools (≥ 2.4.5), xtable (≥ 1.8.0)
Published: 2024-07-06
DOI: 10.32614/CRAN.package.COMBO
Author: Kimberly Hochstedler Webb [aut, cre]
Maintainer: Kimberly Hochstedler Webb <kah343 at>
License: MIT + file LICENSE
NeedsCompilation: no
SystemRequirements: JAGS (
Materials: README
CRAN checks: COMBO results


Reference manual: COMBO.pdf
Vignettes: COMBO Notation Guide
COMBO Notation Guide - Two-stage Misclassification Model


Package source: COMBO_1.1.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): COMBO_1.1.0.tgz, r-oldrel (arm64): COMBO_1.1.0.tgz, r-release (x86_64): COMBO_1.1.0.tgz, r-oldrel (x86_64): COMBO_1.1.0.tgz
Old sources: COMBO archive


Please use the canonical form to link to this page.