womblR: Spatiotemporal Boundary Detection Model for Areal Unit Data

Implements a spatiotemporal boundary detection model with a dissimilarity metric for areal data with inference in a Bayesian setting using Markov chain Monte Carlo (MCMC). The response variable can be modeled as Gaussian (no nugget), probit or Tobit link and spatial correlation is introduced at each time point through a conditional autoregressive (CAR) prior. Temporal correlation is introduced through a hierarchical structure and can be specified as exponential or first-order autoregressive. Full details of the package can be found in the accompanying vignette. Furthermore, the details of the package can be found in "Diagnosing Glaucoma Progression with Visual Field Data Using a Spatiotemporal Boundary Detection Method", by Berchuck et al (2018), <doi:10.48550/arXiv.1805.11636>. The paper is in press at the Journal of the American Statistical Association.

Version: 1.0.5
Depends: R (≥ 3.0.2)
Imports: graphics, grDevices, msm (≥ 1.0.0), mvtnorm (≥ 1.0-0), Rcpp (≥ 0.12.9), stats, utils
LinkingTo: Rcpp, RcppArmadillo (≥ 0.7.500.0.0)
Suggests: coda, classInt, knitr, rmarkdown
Published: 2022-09-05
DOI: 10.32614/CRAN.package.womblR
Author: Samuel I. Berchuck ORCID iD [aut, cre]
Maintainer: Samuel I. Berchuck <sib2 at duke.edu>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: yes
Materials: NEWS
CRAN checks: womblR results


Reference manual: womblR.pdf
Vignettes: womblR-example


Package source: womblR_1.0.5.tar.gz
Windows binaries: r-devel: womblR_1.0.5.zip, r-release: womblR_1.0.5.zip, r-oldrel: womblR_1.0.5.zip
macOS binaries: r-release (arm64): womblR_1.0.5.tgz, r-oldrel (arm64): womblR_1.0.5.tgz, r-release (x86_64): womblR_1.0.5.tgz, r-oldrel (x86_64): womblR_1.0.5.tgz
Old sources: womblR archive

Reverse dependencies:

Reverse suggests: spBFA, spCP


Please use the canonical form https://CRAN.R-project.org/package=womblR to link to this page.