precmed: Precision Medicine

A doubly robust precision medicine approach to fit, cross-validate and visualize prediction models for the conditional average treatment effect (CATE). It implements doubly robust estimation and semiparametric modeling approach of treatment-covariate interactions as proposed by Yadlowsky et al. (2020) <doi:10.1080/01621459.2020.1772080>.

Version: 1.0.0
Depends: R (≥ 3.5.0)
Imports: dplyr, gbm, gam, ggplot2, glmnet, graphics, MASS, MESS, mgcv, rlang, stringr, tidyr, survival, randomForestSRC
Published: 2022-10-12
DOI: 10.32614/CRAN.package.precmed
Author: Lu Tian ORCID iD [aut], Xiaotong Jiang ORCID iD [aut], Gabrielle Simoneau ORCID iD [aut], Biogen MA Inc. [cph], Thomas Debray ORCID iD [ctb, cre], Stan Wijn [ctb], Joana Caldas [ctb]
Maintainer: Thomas Debray <tdebray at>
License: Apache License (== 2.0)
NeedsCompilation: no
Materials: README
CRAN checks: precmed results


Reference manual: precmed.pdf


Package source: precmed_1.0.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): precmed_1.0.0.tgz, r-oldrel (arm64): precmed_1.0.0.tgz, r-release (x86_64): precmed_1.0.0.tgz, r-oldrel (x86_64): precmed_1.0.0.tgz


Please use the canonical form to link to this page.